Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

Q is empty.

The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → IF(gt(s(x), y), x, y)
MINUS(s(x), y) → GT(s(x), y)
IF(true, x, y) → MINUS(x, y)
GE(s(x), s(y)) → GE(x, y)
GT(s(x), s(y)) → GT(x, y)
DIV(x, y) → IF1(ge(x, y), x, y)
DIV(x, y) → GE(x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF1(true, x, y) → GT(y, 0)
IF2(true, x, y) → DIV(minus(x, y), y)
IF2(true, x, y) → MINUS(x, y)

The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → IF(gt(s(x), y), x, y)
MINUS(s(x), y) → GT(s(x), y)
IF(true, x, y) → MINUS(x, y)
GE(s(x), s(y)) → GE(x, y)
GT(s(x), s(y)) → GT(x, y)
DIV(x, y) → IF1(ge(x, y), x, y)
DIV(x, y) → GE(x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF1(true, x, y) → GT(y, 0)
IF2(true, x, y) → DIV(minus(x, y), y)
IF2(true, x, y) → MINUS(x, y)

The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

R is empty.
The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GT(s(x), s(y)) → GT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

R is empty.
The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)

The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)

The TRS R consists of the following rules:

gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
gt(0, y) → false

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(true, x, y) → MINUS(x, y)
MINUS(s(x), y) → IF(gt(s(x), y), x, y)

The TRS R consists of the following rules:

gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
gt(0, y) → false

The set Q consists of the following terms:

gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF2(true, x, y) → DIV(minus(x, y), y)
DIV(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)

The TRS R consists of the following rules:

minus(s(x), y) → if(gt(s(x), y), x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
div(x, y) → if1(ge(x, y), x, y)
if1(true, x, y) → if2(gt(y, 0), x, y)
if1(false, x, y) → 0
if2(true, x, y) → s(div(minus(x, y), y))
if2(false, x, y) → 0

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF2(true, x, y) → DIV(minus(x, y), y)
DIV(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))
div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

div(x0, x1)
if1(true, x0, x1)
if1(false, x0, x1)
if2(true, x0, x1)
if2(false, x0, x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

IF2(true, x, y) → DIV(minus(x, y), y)
DIV(x, y) → IF1(ge(x, y), x, y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule DIV(x, y) → IF1(ge(x, y), x, y) at position [0] we obtained the following new rules [LPAR04]:

DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
DIV(0, s(x0)) → IF1(false, 0, s(x0))
DIV(x0, 0) → IF1(true, x0, 0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF2(true, x, y) → DIV(minus(x, y), y)
IF1(true, x, y) → IF2(gt(y, 0), x, y)
DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
DIV(0, s(x0)) → IF1(false, 0, s(x0))
DIV(x0, 0) → IF1(true, x0, 0)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, x, y) → IF2(gt(y, 0), x, y)
IF2(true, x, y) → DIV(minus(x, y), y)
DIV(x0, 0) → IF1(true, x0, 0)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule IF1(true, x, y) → IF2(gt(y, 0), x, y) at position [0] we obtained the following new rules [LPAR04]:

IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
IF1(true, y0, 0) → IF2(false, y0, 0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF2(true, x, y) → DIV(minus(x, y), y)
DIV(x0, 0) → IF1(true, x0, 0)
IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
IF1(true, y0, 0) → IF2(false, y0, 0)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
QDP
                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
IF2(true, x, y) → DIV(minus(x, y), y)
DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule IF2(true, x, y) → DIV(minus(x, y), y) at position [0] we obtained the following new rules [LPAR04]:

IF2(true, s(x0), x1) → DIV(if(gt(s(x0), x1), x0, x1), x1)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
QDP
                                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

IF1(true, y0, s(x0)) → IF2(true, y0, s(x0))
DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF2(true, s(x0), x1) → DIV(if(gt(s(x0), x1), x0, x1), x1)

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule IF1(true, y0, s(x0)) → IF2(true, y0, s(x0)) we obtained the following new rules [LPAR04]:

IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
QDP
                                                ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF2(true, s(x0), x1) → DIV(if(gt(s(x0), x1), x0, x1), x1)
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule IF2(true, s(x0), x1) → DIV(if(gt(s(x0), x1), x0, x1), x1) we obtained the following new rules [LPAR04]:

IF2(true, s(z0), s(z1)) → DIV(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Instantiation
QDP
                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))
IF2(true, s(z0), s(z1)) → DIV(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1))

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule IF2(true, s(z0), s(z1)) → DIV(if(gt(s(z0), s(z1)), z0, s(z1)), s(z1)) at position [0,0] we obtained the following new rules [LPAR04]:

IF2(true, s(z0), s(z1)) → DIV(if(gt(z0, z1), z0, s(z1)), s(z1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Induction-Processor

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))
IF2(true, s(z0), s(z1)) → DIV(if(gt(z0, z1), z0, s(z1)), s(z1))

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

This DP could be deleted by the Induction-Processor:
IF2(true, s(z0''), s(z1'')) → DIV(if(gt(z0'', z1''), z0'', s(z1'')), s(z1''))


This order was computed:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV(x1, x2)) = x1   
POL(IF1(x1, x2, x3)) = x2   
POL(IF2(x1, x2, x3)) = x2   
POL(false) = 0   
POL(ge(x1, x2)) = 1 + x2   
POL(gt(x1, x2)) = x1   
POL(if(x1, x2, x3)) = 1 + x2   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

At least one of these decreasing rules is always used after the deleted DP:
if(false, x413, y313) → 0


The following formula is valid:
z0'':sort[a23],z1'':sort[a23].if'(gt(z0'' , z1'' ), z0'' , s(z1'' ))=true


The transformed set:
minus'(s(x14), y10) → if'(gt(s(x14), y10), x14, y10)
if'(true, x32, y24) → minus'(x32, y24)
if'(false, x41, y31) → true
minus'(0, x1) → false
gt(0, y') → false
gt(s(x5), 0) → true
minus(s(x14), y10) → if(gt(s(x14), y10), x14, y10)
gt(s(x23), s(y17)) → gt(x23, y17)
if(true, x32, y24) → s(minus(x32, y24))
if(false, x41, y31) → 0
ge(x50, 0) → true
ge(0, s(x59)) → false
ge(s(x68), s(y50)) → ge(x68, y50)
minus(0, x1) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a23](0, 0) → true
equal_sort[a23](0, s(x0)) → false
equal_sort[a23](s(x0), 0) → false
equal_sort[a23](s(x0), s(x1)) → equal_sort[a23](x0, x1)
equal_sort[a40](witness_sort[a40], witness_sort[a40]) → true


↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Induction-Processor
                                                          ↳ AND
QDP
                                                              ↳ DependencyGraphProof
                                                            ↳ QTRS

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(x1)) → IF1(ge(x0, x1), s(x0), s(x1))
IF1(true, s(z0), s(z1)) → IF2(true, s(z0), s(z1))

The TRS R consists of the following rules:

gt(0, y) → false
gt(s(x), 0) → true
minus(s(x), y) → if(gt(s(x), y), x, y)
gt(s(x), s(y)) → gt(x, y)
if(true, x, y) → s(minus(x, y))
if(false, x, y) → 0
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)

The set Q consists of the following terms:

minus(s(x0), x1)
if(true, x0, x1)
if(false, x0, x1)
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
gt(0, x0)
gt(s(x0), 0)
gt(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Induction-Processor
                                                          ↳ AND
                                                            ↳ QDP
QTRS
                                                              ↳ QTRSRRRProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus'(s(x14), y10) → if'(gt(s(x14), y10), x14, y10)
if'(true, x32, y24) → minus'(x32, y24)
if'(false, x41, y31) → true
minus'(0, x1) → false
gt(0, y') → false
gt(s(x5), 0) → true
minus(s(x14), y10) → if(gt(s(x14), y10), x14, y10)
gt(s(x23), s(y17)) → gt(x23, y17)
if(true, x32, y24) → s(minus(x32, y24))
if(false, x41, y31) → 0
ge(x50, 0) → true
ge(0, s(x59)) → false
ge(s(x68), s(y50)) → ge(x68, y50)
minus(0, x1) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a23](0, 0) → true
equal_sort[a23](0, s(x0)) → false
equal_sort[a23](s(x0), 0) → false
equal_sort[a23](s(x0), s(x1)) → equal_sort[a23](x0, x1)
equal_sort[a40](witness_sort[a40], witness_sort[a40]) → true

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

minus'(s(x14), y10) → if'(gt(s(x14), y10), x14, y10)
if'(true, x32, y24) → minus'(x32, y24)
if'(false, x41, y31) → true
minus'(0, x1) → false
gt(0, y') → false
gt(s(x5), 0) → true
minus(s(x14), y10) → if(gt(s(x14), y10), x14, y10)
gt(s(x23), s(y17)) → gt(x23, y17)
if(true, x32, y24) → s(minus(x32, y24))
if(false, x41, y31) → 0
ge(x50, 0) → true
ge(0, s(x59)) → false
ge(s(x68), s(y50)) → ge(x68, y50)
minus(0, x1) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a23](0, 0) → true
equal_sort[a23](0, s(x0)) → false
equal_sort[a23](s(x0), 0) → false
equal_sort[a23](s(x0), s(x1)) → equal_sort[a23](x0, x1)
equal_sort[a40](witness_sort[a40], witness_sort[a40]) → true

Q is empty.
Used ordering:
Combined order from the following AFS and order.
minus'(x1, x2)  =  minus'(x1, x2)
s(x1)  =  s(x1)
if'(x1, x2, x3)  =  if'(x1, x2, x3)
gt(x1, x2)  =  gt(x1, x2)
true  =  true
false  =  false
0  =  0
minus(x1, x2)  =  minus(x1, x2)
if(x1, x2, x3)  =  if(x1, x2, x3)
ge(x1, x2)  =  ge(x1, x2)
equal_bool(x1, x2)  =  equal_bool(x1, x2)
and(x1, x2)  =  and(x1, x2)
or(x1, x2)  =  or(x1, x2)
not(x1)  =  x1
isa_true(x1)  =  isa_true(x1)
isa_false(x1)  =  isa_false(x1)
equal_sort[a23](x1, x2)  =  equal_sort[a23](x1, x2)
equal_sort[a40](x1, x2)  =  equal_sort[a40](x1, x2)
witness_sort[a40]  =  witness_sort[a40]

Recursive path order with status [RPO].
Quasi-Precedence:
[true, false, 0, minus2, if3, equalsort[a23]2, equalsort[a40]2] > s1 > [minus'2, if'3] > gt2
ge2 > gt2
equalbool2 > gt2
and2 > gt2
or2 > gt2
isatrue1 > gt2
isafalse1 > gt2
witnesssort[a40] > gt2

Status:
equalsort[a23]2: multiset
equalsort[a40]2: [1,2]
minus2: [2,1]
minus'2: [2,1]
true: multiset
or2: multiset
and2: multiset
gt2: multiset
0: multiset
equalbool2: multiset
if3: [3,2,1]
if'3: [3,2,1]
isafalse1: multiset
witnesssort[a40]: multiset
false: multiset
s1: multiset
ge2: [1,2]
isatrue1: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

minus'(s(x14), y10) → if'(gt(s(x14), y10), x14, y10)
if'(true, x32, y24) → minus'(x32, y24)
if'(false, x41, y31) → true
minus'(0, x1) → false
gt(0, y') → false
gt(s(x5), 0) → true
minus(s(x14), y10) → if(gt(s(x14), y10), x14, y10)
gt(s(x23), s(y17)) → gt(x23, y17)
if(true, x32, y24) → s(minus(x32, y24))
if(false, x41, y31) → 0
ge(x50, 0) → true
ge(0, s(x59)) → false
ge(s(x68), s(y50)) → ge(x68, y50)
minus(0, x1) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a23](0, 0) → true
equal_sort[a23](0, s(x0)) → false
equal_sort[a23](s(x0), 0) → false
equal_sort[a23](s(x0), s(x1)) → equal_sort[a23](x0, x1)
equal_sort[a40](witness_sort[a40], witness_sort[a40]) → true




↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Induction-Processor
                                                          ↳ AND
                                                            ↳ QDP
                                                            ↳ QTRS
                                                              ↳ QTRSRRRProof
QTRS
                                                                  ↳ QTRSRRRProof
                                                                  ↳ QTRSRRRProof

Q restricted rewrite system:
The TRS R consists of the following rules:

not(false) → true
not(true) → false

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

not(false) → true
not(true) → false

Q is empty.
Used ordering:
Recursive path order with status [RPO].
Quasi-Precedence:
[not1, false] > true

Status:
not1: [1]
true: multiset
false: multiset

With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

not(false) → true
not(true) → false




↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Induction-Processor
                                                          ↳ AND
                                                            ↳ QDP
                                                            ↳ QTRS
                                                              ↳ QTRSRRRProof
                                                                ↳ QTRS
                                                                  ↳ QTRSRRRProof
QTRS
                                                                      ↳ RisEmptyProof
                                                                      ↳ RisEmptyProof
                                                                      ↳ RisEmptyProof
                                                                  ↳ QTRSRRRProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.
The TRS R is empty. Hence, termination is trivially proven.
The TRS R is empty. Hence, termination is trivially proven.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

not(false) → true
not(true) → false

Q is empty.
Used ordering:
Polynomial interpretation [POLO]:

POL(false) = 0   
POL(not(x1)) = 1 + x1   
POL(true) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

not(false) → true
not(true) → false




↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ DependencyGraphProof
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ Instantiation
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Induction-Processor
                                                          ↳ AND
                                                            ↳ QDP
                                                            ↳ QTRS
                                                              ↳ QTRSRRRProof
                                                                ↳ QTRS
                                                                  ↳ QTRSRRRProof
                                                                  ↳ QTRSRRRProof
QTRS

Q restricted rewrite system:
R is empty.
Q is empty.